
Journal of Computational Physics149,194–197 (1999)

Article ID jcph.1998.6121, available online at http://www.idealibrary.com on

NOTE

On an Eighth Order Formula for Solving
a Schrödinger Equation

The study of finite difference multi-step schemes for constructing the solutions of second
order linear ordinary differential equations, needed for example in investigations of atomic
and molecular structure and scattering, has long been established. Popular amongst the
available choices are Numerov’s method because of its small leading error and symmetry
and de Vogelaere’s method because of the ease of applying it to sets of coupled differential
equations [1] and also various invariant embedding schemes such as Johnson’s log-derivative
method [2]. The leading global truncation errors in all these are proportional to the fourth
power of the step length,h. Attempts to derive integration schemes with errors of higher
order inh are comparatively few because of the success of the cited methods. One such
higher order method is the eighth order formula of Allisonet al.[3] with global errorO(h8).
These authors demonstrated that this method works well for a number of examples but their
illustration of calculating phase shifts induced by a 6–12 Lennard–Jones potential requires
further study because of the strong repulsion at the origin; the variation of the error with step
length must be studied carefully when finite difference methods are applied in the presence
of such strong singularities [4]. The 6–12 form is a potential with a well at medium range,
a long range van der Waals attraction, and a very repulsive core at short range. The core
can complicate the error analysis.

The equation solved by Allisonet al. is, for zero angular momentum,

d2y(r )/dr2+ (c6r
−6− c12r

−12+ k2
)
y(r ) = 0 (1)

with boundary conditions

y(0) = 0 y(r )→ A(sinkr + tanδ coskr) asr→∞, (2)

wherer is the independent variable,c6 andc12 are coefficients each equal to 500 in ap-
propriate units,k is the wave number,A is a constant, andδ is the phase shift. Near the
origin the equation is dominated by ther−12 term and its solutions contain modified Bessel
functions as factors [5] which are asymptotically liker 11/2 exp[±√(c12)/5r 5] for small r .
Finite difference formulae, including the eighth order one, cannot follow these functions
adequately. It has been shown that when Hartree’s method is used to solve this equation a
starting error occurs which vanishes when exp[−√(c12)/5h5] is small (as it is for smallh)
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TABLE I

Rotationless Phase Shifts

k h Exacta Numerova Eighth Orderb

1 0.04 0.15442 0.15491
1 0.08 0.15442 0.16270 0.154

5 0.03 −0.48303 −0.48302
5 0.06 −0.48303 −0.47438 −0.484

10 0.025 −0.43100 −0.42593
10 0.05 −0.43100 −0.34910 −0.431c

a This calculation.
b Ref. [3].
c Incorrect sign displayed in Ref. [3].

leaving the expectedO(h2) error [6]. Similar error behaviour is expected for any finite
difference method applied to Eq. (1) but accurate values of the phase shifts can be produced
if sufficiently small step lengths are used; the results shown as “exact” in Table I were
obtained with small step lengths. In the examples studied below, the angular momentum is
chosen as zero because otherwise the centrifugal barrier tends to keep the colliding particles
out of the core region, as is reflected in the results of Allisonet al.

Table I shows that the eighth order formula is much more accurate than Numerov’s
method. The term exp[−√(c12)/5h5] is very small for all the step lengths quoted in Table I,
and the inability of Numerov’s method to follow the Bessel functions near the origin can be
discounted in these calculations; surprisingly, this problem matters most when the coefficient
of ther−12 term is very small [6]. However, as we show, ther−12 term is still responsible
for the marked superiority of the eighth order formula but to some extent this is an artefact
of the problem under consideration. The differential equation may be written

d2y(r )/dr2− K 2(r )y(r ) = 0, (3)

whereK (r ) is a local quantity analogous to a wave number. The leading term of the local
relative truncation error of Numerov’s method has magnitude of(hK)6/240 approximately
and the ratio of the next term to it is about(hK)2/23. The leading term of the local relative
truncation error of the eighth order method has magnitude approximately(hK)10/106.
(A factor f was omitted from the first term of Eq. 2.1 of Ref. [3]). The wave function is
extremely small near the origin because of the strong repulsion and remains very small until
r ≈ 0.8; numerical experiments show that when the integration is started between the origin
andr = 0.8 the calculated phase shift is correct to five significant figures but not otherwise.
This means that, for five figure accuracy, the local errors become significant in both the
Numerov and eighth order calculations only whenr ≥ 0.8.

Table II shows the truncation errors fork= 1 (they are not much different fork= 5 and
k= 10). It can be seen that for step length 0.08 the Numerov errors are substantial and, from
the last column, that forr < 0.83 theh8 Numerov term is larger than theh6 term and cannot
be ignored. The large errors arise from ther−12 term in the potential which causesK (r ) to
be large, as can be seen in the second column. Forh= 0.04 the Numerov errors are much
smaller; values in the last column would be divided by four. The errors for the eighth order
method are much smaller than the Numerov values forh= 0.08; while they start large they
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TABLE II

Local Truncation Errors with k = 1

(hK)6/240b (hK)6/240b (hK)10/106 c (hK)2/23d

r K (r )a (h= 0.04) (h= 0.08) (h= 0.08) (h= 0.08)

0.80 73.3 2.6 170. 50. 1.5
0.81 67.1 1.6 99. 21. 1.3
0.82 61.4 0.9 58. 8.5 1.1
0.83 56.1 0.5 34. 3.5 0.9
0.84 51.3 0.3 20. 1.4 0.7
0.85 46.8 0.2 11. 0.6 0.6
0.86 42.7 0.1 6.6 0.2 0.5
0.87 38.8 0.1 3.7 0.1 0.4

a Local wave number.
b Numerov.
c Eighth order, Ref. [3].
d Ratio of Numerovh8 term toh6 term.

fall very rapidly. It is by chance that they fall so quickly just in the region where the wave
function starts to grow, thus flattering the eighth order method.

The fourth differences of phase shifts induced by a nonsingular potential and calculated
by Numerov’s method, with its globalO(h4) error, should be almost constant. In Table III,
showing differences of phase shifts calculated for the 6–12 potential at wave numberk= 1,
they start to be constant for step lengths around 0.04; they are constant for smaller step
lengths but not for step lengths near 0.08, where the higher power terms in the error expansion
can be important. The constant fourth differences allow very accurate phase shifts to be found

TABLE III

Differences and Extrapolation for Numerov’s Method with k = 1

h Phase shift 2nd 4th Extrapolated

0.005 0.15442116 0.00000590 0.00000293 0.15442110
0.010 0.15442293 0.00001302 0.00000302
0.015 0.15443059 0.00002308
0.020 0.15445128 0.00003616
0.025 0.15449505
0.030 0.15457498

0.01 0.15442293 0.00009535 0.00005269 0.15442519
0.02 0.15445128 0.00021277 0.00005851
0.03 0.15457498 0.00038288
0.04 0.15491144 0.00061150
0.05 0.15563079
0.06 0.15696164

0.02 0.15445128 0.00159003 −0.00073171 Invalid
0.04 0.15491144 0.00369093 0.02088290
0.06 0.15696164 0.00506013
0.08 0.16270277 0.02731222
0.10 0.17350403
0.12 0.21161752
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by extrapolation. When the step length is increased, the exponential behaviour referred to
earlier must eventually be considered. Table III shows the Numerov calculations with a step
length of 0.04 to be almost acceptable although less accurate than eighth order calculations;
the higher order (inh) errors become less important around the point where the wave
function starts to grow.

It is concluded that caution is needed when applying any finite difference method to solve
a differential equation with singularities. In particular, the results obtained when testing a
new method, such as the eighth order formula, on such an equation must be examined
carefully. The eighth order formula is more accurate than Numerov’s method (as might be
expected) for evaluating scattering by a Lennard–Jones 6–12 potential but it is flattered by
this example because the wave function grows significantly just when the local truncation
error decreases acceptably.
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